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Abstract

Natural convection of fluid and solid conjugate problem inside a complex cavity is studied by using vorticity–stream

function method. The influences of material character, geometrical shape and Rayleigh number on the heat transfer in

overall concerned region have been investigated. The followings can be concluded under steady state: The flow and heat

transfer increase with the increase of the thermal conductivity in solid region; Both geometric shape and Rayleigh

number affect the overall flow and heat transfer greatly.
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1. Introduction

The phenomenon of two-dimension natural convec-

tion in an enclosure is widely used in engineering such as

solar energy collector, heat preservation of thermal

transport circuits, cooling of electrical units, etc. It has

been intensively researched last century. Natural con-

vections in cavity of various shape and many kinds of

boundary conditions have been simulated [1–3]. Con-

vection flow in partially open enclosure has been inves-

tigated [4]. Natural convection inside the channel

between the flat-plate cover and sine-wave absorber of a

cross-corrugate solar air heater has been discussed by

Gao et al. [5] in 1999. Their model is very similar to the

solar energy collector. Liu and Tao [6] have studied the

natural convection around a vertical channel in a rect-

angular enclosure in 1996. In their calculation the

influence of vertical channel walls to the flow is taken

into account, but the channel walls are iso-thermal. The

main aims of such simulations or experiments are to find

the relations between dimensionless parameters and re-

sulted fluid and heat transfer characteristics. But many

studies have been done before simplify the models by
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considering the adiabatic boundary as a wall of infinite

small thickness or wall with zero conductivity, this is

ideal adiabatic boundary condition. Some simulations

modeling a solid region in flow area neglect the heat

transfer in the solid regions. These assumptions simplify

problems and make them ease to study, but do not apply

in the engineering practice and experiments very well.

Experiment about the natural convection in a cavity

where a heated cylinder located in the center has been

conducted by Cesini et al. [7]. In their experiment the

upper wall is bounded by plexiglas whose thermal

properties are known and there is a certain heat flux at

its outside. In their experiment conduction of the plex-

iglas is taken into consideration. A numerical study of

convection heat transfer for air from two vertically

separated horizontal heated cylinders confined to a

rectangular enclosure has been conducted [8], where the

vertical walls have finite conductivity and the heat con-

duction has been taken into consideration. In this paper

we also take the interactions between conduction in solid

wall and convection of fluid region into account and

simulate the heat transfer in a complicated enclosure

with vorticity–stream function method.

As shown in Fig. 1, a horizontal high temperature

(Th) cylinder (e) of diameter D is enclosed by a cavity of

rectangular cross-section (H � W ), both vertical side

walls noted as (a) and (b) in Fig. 1 of this cross-section
ed.
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Nomenclature

A aspect ratio H=W
B relative diameter of horizontal cylinder, ra-

tio D=W
C relative thickness of solid region, ratio h=W
D diameter of the high temperature circle (m)

g gravitational acceleration (m s�2)

h thickness of solid wall (m)

H height of constant low temperature wall (m)

k thermal conductivity ratio k ¼ ks=kf
kf thermal conductivity of fluid (Wm�1 K�1)

ks thermal conductivity of solid wall

(Wm�1 K�1)

Nu local Nusselt number on the high tempera-

ture circle, Eq. (10)

Numean overall mean Nusselt number of the high

temperature circle, cf. Eq. (11)

Ra Rayleigh number

Th hot wall temperature (K)

Tc cold wall temperature (K)

T dimensional temperature (K)

t dimensional time (s)

u, v velocity components in x, y directions

(m s�1)

U , V dimensionless velocity components in X , Y
directions

W length of adiabatic boundary (m)

x, y dimensional Cartesian coordinates (m)

X , Y dimensionless Cartesian coordinates

Xc, Yc the center coordinates of the high tempera-

ture circle

T � dimensionless temperature

T �
ns dimensionless grid temperature nearest to

the interface in the solid region

T �
nf dimensionless grid temperature nearest to

interface in the flow field

Greek symbols

af thermal diffusivity of the fluid (m2s�1)

as thermal diffusivity of the solid (m2s�1)

b coefficient of thermal expansion of the fluid

(K�1)

m kinematic viscosity of the fluid (m2 s�1)

q density of the fluid (kgm�3)

u stream function

x vorticity

Subscripts

c cold wall

f fluid

h hot wall

nf nearest nodes in fluid field

ns nearest nodes in solid region

s solid wall

Fig. 1. Model.
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are isothermal, the temperature is Tc. The upper hori-

zontal boundary (f) of the rectangular is surrounded by

solid material with constant thermal conductivity ks and
thermal diffusivity as. The upper of this solid region
horizontal boundary symbolized by �c’ is considered as

adiabatic. The lower horizontal boundary (d) of this

cavity is supposed as ideal adiabatic boundary with

infinite small wall thickness and zero thermal conduc-

tivity. All dimensions and boundaries of our model are

noted in Fig. 1.

In this paper we changed the dynamic parameter

mainly Ra and thermal characteristics of solid region

material to simulate the heat transfer under different

conditions. We also varied the geometric shapes of our

model such as aspect ratio, relative thickness of solid

region, relative diameter of the high temperature cylin-

der to discuss their influence on the characteristics of

relevant resulting flow and heat transfer. We defined

dimensionless parameter Numean to measure and com-

pare the flow and heat transfer intensity. Details of Nu
and Numean are described clearly in part 3. In order to

comparison, we also defined some geometric parameters

as
A ¼ H
W

; B ¼ D
W

; C ¼ h
W
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2. Governing equations and numerical method

2.1. Governing equations

By introducing the Boussinesq approximation and

effective pressure into two-dimension natural convec-

tion, including the temperature equations, the whole

equations of our model can be written as

o
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ou
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� o

oy
x
ou
ox

� �
¼ m

o2x
ox2
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þ o2x
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Here in our equations from (1)–(4) the internal relations

of these variables are

u ¼ ou
oy

; v ¼ � ou
ox

; x ¼ ou
oy

� ov
ox

It can be seen that the definition of vorticity here is

opposite to conventional definition in fluid dynamics.

We take the width of the cavity (adiabatic boundary

scale) W as reference length and introduce the following

dimensionless variables

X ¼ x
W

; Y ¼ y
W

; T � ¼ T � Tc
Th � Tc

; x ¼ xW 2

m
;

u ¼ u
m

Ra ¼ gbDTW 3=afm

Eqs. from (1)–(4) are changed into the following:
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In convenient to comparison we defined

k ¼ ks=kf

For steady state two-dimension natural flow, Eq. (8) is a

standard thermal diffusive equation without source or

sink. Then we can deduce the flow and heat transfer are

not affected by as at all.

2.2. Boundary condition

2.2.1. Vorticity

We use Wood formula [9] to calculate the vorticity on

boundary

x1 ¼
3ðu2 � u1Þ

dY 2
� x2

2
þOðdY 2Þ

ðBoundary ðaÞ; ðbÞ; ðfÞ and ðdÞ shown in Fig: 1Þ

in which subscript 1 represents nodes on boundary and 2

represents the nearest internal nodes neighbor to this

boundary.

2.2.2. Stream function

Boundary (a), (b), (f) and (d) shown in Fig. 1

u ¼ 0
2.2.3. Temperature

Boundary (e) shown in Fig. 1

T � ¼ 1:0

Boundary (a) and (b)

T � ¼ 0:0

Boundary (c) and (d)

oT �

on
¼ 0:0

Boundary (f), the interface of fluid region and solid

region

T �
f ¼ T �

s

kf
oT �

oY

� �
f

¼ ks
oT �

oY

� �
s

oT �

oY

� �
f

¼ k
oT �

oY

� �
s

2.2.4. Settings for solid region

m ¼ 1020



Fig. 2. Grid distribution scheme.
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2.3. Grids and conjugate details

Because of the complex geometric shape we use non-

structured grid system (Fig. 2). The grid is dense near the

boundary and loose deep into the internal due to the

sensitivity of the result to the boundary. Especially on

the interface we choose symmetric grid distribution on

both sides of this interface. The closer to this interface,

the denser the grid is.

In order to get the temperature on the interface, we

extend the temperatures on both sides in Taylor series

T �
ns ¼ T � þ oT �

oY
� dY þ ðdY Þ2

2!

o2T �

oY 2

T �
nf ¼ T � þ oT �

oY
� ð�dY Þ þ ð�dY Þ2

2!

o2T �

oY 2

We delete the dY term by combine the two extensions.

Considering the interface temperature boundary condi-

tion

oT �

oY

� �
f

¼ k
oT �

oY

� �
s

We can deduce the temperature on the interface as Eq.

(9)

T � ¼ kT �
ns þ T �

nf

ð1þ kÞ þOðdY 2Þ ð9Þ

In our dimensionless calculation field, dY is selected as

0.0005, So when we use equation (9) the error brought

by difference is (0.0005)2. This is slight enough to be

accepted in simulation.
3. Results and discussion

In order to test our whole simulation scheme, we

simulated the flow in porous media described in [10]. By

using the completely same parameters of Ra ¼ 103 we

got very accurate results. This demonstrates that by

combining symmetric grid on both side of boundary (f)

and formula (9) to conjugate convection and conduction

is feasible.
In order to evaluate the overall heat transfer rate in

this research, we defined local Nusselt number Nu and

overall mean Nusselt number Numean, referred to high

temperature horizontal cylinder.
Nu ¼ oT �

oX

����
����� 2 X � Xcj j

B
þ oT �

oY

����
����� 2 Y � Ycj j

B
ð10Þ

Numean ¼
1

pB

I
Nuds ð11Þ
3.1. Stream lines and temperature distributions

First we present distributions of stream and temper-

ature in the calculated domain of different conductivity

ratios on the condition of Ra ¼ 104, A ¼ 1:0, B ¼ 0:4,
C ¼ 0:2 (shown in Fig. 3). From Fig. 3 we can find both

stream function and temperature distributions vary with

k, especially the temperature distributions are different

from each other clearly. The figures of c� series here are

the dimensionless temperatures of three concerned

boundaries, they are lower adiabatic boundary symbol-

ized by (d) in Fig. 1, interface of solid region and flow

field labeled by (f), the upper adiabatic boundary

annotated by (c) in Fig. 1, respectively. From c� series

we can find that the temperature distributions change

greatly with conductivity ratio k. When k is less than 1,

the temperature of the interface is greater than that of

upper boundary at any X position, both of them are

greater than the temperature of the lower boundary at

the same X position. On the contrary, when k is greater

than 1, the temperature of interface is less than that of

the lower adiabatic boundary at any X position. Just as

we expected, the temperature of interface is always

greater than that of the upper horizontal adiabatic

boundary at any X position in spite of k.

3.2. Influence of material characteristics and dynamic

parameter on Numean

In order to analyze the influence of material charac-

teristics and dynamic parameter on the overall heat

transfer rate. We fixed geometrical shape of our calcu-

lated domain and vary conductivity ratio k. The fixed

condition we chose here is A ¼ 1, B ¼ 0:4, C ¼ 0:2.
From Fig. 4, it can be concluded that the overall Nu
number increases with the increase of k and Ra.

3.3. Influence of geometric shape on the overall heat

transfer rate

This time dynamic parameter is fixed at Ra ¼ 104.

Under this condition, we analyzed the influence of some

geometric parameters on the overall heat transfer rate at

three typical k values. From Figs. 5–7 we can find they



Fig. 3. Calculated stream and temperature distributions.
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have one point in common, that is the overall heat

transfer rate increase with the increase of k. This trend is

compared well with the trend in Fig. 4.
Fig. 5 presents the variation of Numean with the

change of A, the ratio of cavity height to its width. From

it we can find Numean increases with the increase of A. But



Fig. 4. Variation of overall mean Nu with k at different Ra.

Fig. 5. Variation of Numean with the variation of A at different k.

Fig. 6. Variation of Numean with the variation of B at different k.

Fig. 7. Variation of Numean with the variation of C at different k.
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as A increasing the change of Numean due to the variation

of k is much slighter. Especially when A is larger than 1.5

the overall heat transfer is not sensitive to the solid

material conductivity any more.

Fig. 6 gives the variation of Numean with the variation

of B, the relative diameter of hot temperature horizontal

cylinder. Since variation of B is confined to ð0; 1Þ, our
research range is from 0.1 to 0.7. During this range it can

be seen that the overall heat transfer rate first decreases

with the increase of relative diameter and then reaches

its minimum at about B ¼ 0:5 and thereafter increases

with B. At the same time the change of Numean due to

variation of k is more and more clear as B increases.

Fig. 7 shows the influence of the relative solid region

thickness C on the overall heat transfer rate. The whole

trend is that Numean increases with the increase of C
under all the three typical k. It is notable that when value

C is very small Numean increases faster with C, but when
C is large enough Numean increases slightly with C. This
demonstrates Numean changes less and less as C increases.
4. Conclusions

1. Our scheme of combining symmetric grid system on

both sides of conjugate interface (f) and Eq. (9) to

simulate fluid with solid region is successful. This is

very useful to simulate other similar problems.

2. Overall heat transfer rate represented by number

Numean increases with k and dynamic parameter Ra.
3. The geometric parameters affect Numean greatly.

According to Fig. 5, when A is large enough Numean

changes little with the increase of k, This is because

the cold wall is relatively long and the convection

dominates the overall heat transfer. On the other

hand the conduction in solid is unimportant in spite

of the thermal properties of the solid region. Figs. 6

and 7 present a similar phenomena. In Fig. 6 when
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B becomes large enough Numean changes greatly with

the thermal properties. This is because the solid re-

gion is relatively near the hot wall and the conduction

in the solid region dominates, hence the Numean is sen-

sitive to the thermal properties. Fig. 7 tells us k is the

major factor. This point can be assimilated to the

thermal resistance. There exists a relatively dominant

factor and we should pay special attention to the

important factors.
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